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1.0 Introduction

Airborne early warning radar systems operate in an environment that interferes with the reception of
the target signal. The sources of interference could be deliberate jamming, non-hostile radio frequency
interference, clutter and the noise inherent in any electrical system. The interference impacts on system
performance by reducing the probability of target detection (Py) and increasing the probability of false
alarms (Py,). These effects are further aggravated by inherent platform motion, multipath effects and a

changing interference environment.

The traditional approach to interference suppression is to maximize the reception from the signal
direction while minimizing the sidelobes in all other directions, i.e. the mainbeam gain is maximized
while keeping the receiving antenna sidelobes below a prescribed level. This approach is useful only in
relatively weak and static interference scenarios. In severe and dynamic interference scenarios, the
traditional non-adaptive approach is inadequate and adaptive array techniques are required. The decisive
advantage of an adaptive array is the ability to electronically steer the antenna mainlobe to any desired
direction, while automatically placing deep pattern nulls in the specific direction of interference sources.
This null placement is achieved automatically, without extensive a priori information about the

interference scenario. Any required information is estimated in real time, using data received at the array.

Consider a phased array antenna with N spatial channels, possibly subarrays of a larger array. A
series of M pulses is transmitted using this array. The M pulses form a Coherent Processing Interval
(CPT). For each pulse, the return signal is sampled at a high rate, with each sample corresponding to a
range cell. The number of samples per pulse determines the number of range cells. The received data can
be visualized as a data cube with the spatial channels, pulses and range cells forming the three axes. The
role of adaptive processing is to determine the location and speed of any targets that are in the data cube.
The approach is to choose a particular range cell (the primary range cell) and determine the presence or
absence of a target within that range cell. Spatially, the transmit direction sets the look angle, while the
look Doppler varies over the entire Doppler spectrum. The adaptive process is repeated for each look
Doppler after which the next range cell becomes the primary cell and the entire process is repeated.

Classical space-time adaptive processing (STAP) algorithms are based on the estimated covariance
matrix of the interference [1]. The most straightforward STAP algorithm uses the NM dimensional
covariance matrix of the interference to minimize the mean squared error with respect to the desired
signal [2]. The algorithm obtains NM adaptive weights, resulting in a weighted combination of the NM
data samples in the primary range cell. If the true covariance matrix of the interference is known, this
traditional adaptive algorithm maximizes the output signal to noise ratio (SINR). In practice, the
interference statistics are unknown and this matrix is estimated using secondary data obtained from range
cells close to the primary range cell. An accurate estimate requires about 2NM to SNM independent,

identically distributed (i.i.d.) secondary data samples [3]. Typically, these samples are chosen from
secondary data placed symmetrically about the range cell of interest.




The problem with this classical algorithm is that obtaining such a large number of i.i.d. samples is
difficult, if not impossible. For example, urban areas and land-sea interfaces present the problem of large
variations In terrain over relatively short distances. The resulting clutter returns show correspondingly
large variations in statistics over short distances. In practice, it is impossible to accurately estimate the
NMXNM interference covariance matrix. Another important concern with statistical approaches in general
is the required computation load. Secondary data from cells in vicinity of the primary range cell must be
stored and processed before the adaptive procedure can be applied. The covariance matrix must be
updated regularly to reflect the changing interference conditions. Determining the NM adaptive weights
requires the solution of NM dimensional matrix equation. As mentioned earlier, this process must be
repeated for each look Doppler and each range cell. The entire process therefore involves a massive
amount of computation that is supposed to be done in real time. This computation load is in itself
prohibitively expensive.

Recently, to overcome some of these problems with classical statistical methods, some options have
been investigated. Much of this work has focused on reducing the number of adaptive unknowns,
equivalently the degrees of freedom (DOF), associated with the adaptive process. Reducing the number of
adaptive unknowns (the size of the estimated covariance matrix) reduces the required secondary data [4].
Furthermore, estimating a smaller covariance matrix leads to a lower computation load. In particular,
Wang and Cai introduce the Joint Domain Localized (JDL) processing algorithm, a post-Doppler,
beamspace method [5]. The JDL algorithm uses very few DOF while retaining maximal gain against
thermal noise.

There is one other important drawback with traditional statistical adaptive algorithms. The inherent
assumption in estimating the covariance matrix is that the statistics of the secondary data is the same as
the statistics of the interference in the primary range cell, i.e. the data cube is homogeneous. Statistical
algorithms suffer from significant loss in performance when this assumption is violated. In practice,
nonhomogeneous data is ubiquitous, with both natural and man made causes. Changes in terrain over
short distances imply a corresponding change in the clutter characteristics with range. This problem is
especially severe in airborne surveillance over land-sea interfaces and urban terrain. Man made non-
homogeneities include vehicular ground traffic, corner reflectors, dense target environments, and active
counter measures such as blinking jammers. In all these cases, the statistics of the interference fluctuates
rapidly with distance and the secondary data required to obtain a good estimate of the covariance matrix
is not available.

In response to the problem of non-homogeneous data, another major topic of research has been non-
statistical methods that do not require a covariance matrix at all [6]. These methods use data from the
range cell of interest only. Hence, these techniques bypass the problems of covariance matrix estimation
associated with statistical approaches. Using the fact that an incident field presents a linear phase front at
the receiver array, the signal component is cancelled. The resulting data has purely interference terms.

Minimizing the total output power of these interference terms. while maintaining the antenna gain, leads

(3]




to a least squared error solution. In [7], the algorithm of Sarkar and Sangruji [6] has been extended to
account for beam mismatch. The least squares methods, also known as direct data domain (D%) methods,
show some promise to be significantly better than statistical approaches in dealing with non-stationary,

non-homogeneous clutter.

Adaptive algorithms were originally developed for proof-of-concept, based on several idealizations
of the real world. The performance of proposed algorithms were illustrated using simulated data that
conformed to the idealizations. This approach has been effective in demonstrating the potential of STAP.
However, in applying STAP algorithms to measured data, ignoring the effects of invalid idealizations
leads to severe degradation of STAP performance. This effort addresses some of the issues in applying
adaptive processing to real world, measured, data, by looking at the performance of the two approaches
mentioned above: the JDL and D* algorithms. In particular, the two main issues addressed are:

» Mutual Coupling: Adaptive processing algorithms were formulated assuming the receiving
antenna is a linear array of isotropic, point sensors. Such sensors spatially sample the field incident
on the array without any re-radiation and there is no interaction or mutual coupling between the
elements. However, such an array of ideal elements may be desirable, but is not achievable in
practice. The elements must have some physical size. The elements spatially sample the incident
fields and reradiate the fields. The reradiated fields interact with the other elements, resulting in

mutual coupling between the elements of the array.

» Nonhomogeneous Data: As mentioned earlier, traditional adaptive processing algorithms are
dependent on the assumption that the secondary data is homogeneous. Non-homogeneous data

impacts significantly on the performance even low DOF algorithm such as J DL.

Section 2.0 is a detailed analysis of the issue of mutual coupling and near field scattering. The section
presents examples to illustrate the impact of mutual coupling on both D' and statistical algorithms. In
particular, this section presents the use of numerical electromagnetics, specifically the Method of
Moments (MOM) to evaluate and compensate for the mutual coupling. Under the current effort, the
impact of mutual coupling the JDL algorithm is presented. The formulation presented allows for the use
of measurements to achieve compensation for mutual coupling without a detailed numerical analysis.
Section 3.0 discusses the issues of non-homogeneous data, the use of a non-homogeneity detection and

direct data domain processing in non-homogeneous conditions.

In this report, italicized letters denote scalars and integers, such as x and N, and lower case bold italic
characters denote column vectors, e.g. x. Upper case bold italic characters such as R denote matrices,
while subscripts to bold characters represent the entries in the vector or matrix, such as R,,. The
superscript " denotes the transpose and the superscript ¥ denotes the conjugate transpose (Hermitian) of a

vector or matrix.




2.0 Mutual Coupling and Near Field Scattering

Adaptive processing algorithms were originally developed assuming the receiving antenna to be a
linear array of isotropic point sensors. In such a case, the sensors spatially sample the field incident on the
array without any re-radiation. However, such an array of ideal elements may be desirable, but is not
achievable in practice. The elements of the array must physically be some kind of antenna. They may be
as simple as a wire dipole or more complicated such as a Yagi-Uda element. In either case, the elements
not only spatially sample the incident fields, but also re-radiate the fields i.e. the antenna is a receiver and
a scatterer. The re-radiated fields interact with the other sensors resulting in mutual coupling between the
elements of the array.

Another assumption of the adaptive algorithms is that the array operates in a physical environment
where nothing impedes the reception of the signals and interference. However, this assumption may not
be satisfied in practice. The array is often in the presence of scatterers, which changes the environment in
which the incident fields are received. For example, the fuselage of the aircraft, in airborne radar, changes
the physical environment in which the incident fields are received. The effects of these near field
scatterers are similar to the effects of mutual coupling between the elements of the array. This is because
the scatterers, much like the array elements themselves, effect the signal reception by re-radiating the
incident fields.

Gupta and Ksienski demonstrated the effects of mutual coupling on traditional statistical methods
[8]. They base their analysis on a simple wire-dipole model for the array elements. They demonstrate that,
even for large inter-element spacing, the mutual coupling causes significant degradation in the
performance of the array. Since then, it has been shown that mutual coupling severely impacts on the
performance of reduced rank algorithms such as JDL and non-statistical algorithms [9, 10]. In the case of
the JDL algorithm, mutual coupling makes the Fourier transformation to angle space invalid [9]. In the
case of direct data domain methods, the mutual coupling completely destroys the linear phase front that
has been assumed for the incident fields [10]. Near field scatterers present similar problems. By re-
radiating these fields, they destroy the linear phase front associated with the incident fields.

Mutual coupling between the elements of the antenna array and due to the near field scatterers is
caused by the re-radiation of the incident field. This is a purely electromagnetic phenomenon. Therefore,
to properly understand how the mutual coupling affects the adaptive algorithm, we need to properly
understand the electromagnetic nature of the antenna array. Furthermore, the electromagnetic analysis of
the array must be incorporated into the adaptive algorithm.

2.1 Method of Moments Analysis

The work of Gupta and Ksienski [8] is based on a formula given by Schelkunoff and Friis [11] for
the mutual coupling between half wavelength dipoles separated by half a wavelength. This formula is
equivalent to using a single sinusoidal basis function per element in a MOM type numerical analysis, an
approach that is well known to be inadequate [12].




Using this formulation, Gupta and Ksienski develop a simple matrix equation to relate the open
circuit voltages (voltages at the ports of the array if all ports were open circuited) with the given measured
voltages. They suggest that the open circuit voltages are free of the effects of mutual coupling. However,
this is not accurate. The open circuit voltages are the voltages in the presence of the other, open circuited,
elements. The open circuited elements still re-radiate the incident fields and still contribute to the mutual
coupling. Using open circuited voltages implies that the mutual coupling has been reduced, but not
eliminated. This formulation is therefore valid only in low interference scenarios and cannot be used in
the presence of near field scatterers. Several researchers have used this formulation for an initial analysis
of the mutual coupling problem [13-15].

We present here a thorough MOM analysis of the mutual coupling problem based on the work of
Adve and Sarkar [10]. The problem of signal recovery by a linear array of equispaced, thin, half
wavelength dipoles is analyzed. For an accurate MOM analysis, multiple basis functions (unknowns) per
element are used. Using a Galerkin formulation, the entries of the MOM impedance matrix measure the

interaction between the basis functions, i.e. they quantize the mutual coupling.

Section 2.1.1 briefly presents the proposed MOM analysis. The antenna is modeled as a linear array
of thin, identical, centrally point loaded dipoles. The MOM is then used to analyze the behavior of the
array in the presence of an arbitrary incident field. This analysis leads to the MOM impedance matrix.
MOM analysis of wire dipoles is well known [16]. However, the formulation is presented here to obtain
the exact relationship between the incident fields with the measured voltages. This formulation will be

crucial to the elimination of mutual coupling.

Section 2.1.2 presents the effects of mutual coupling on the performance of the D* algorithm of [6].
Section 2.1.3 presents a technique to compensate for the effects of mutual coupling. The proposed
technique is tested on the example of Section 2.1.2. The technique is also compared to the compensation
for mutual coupling using open circuit voltages as suggested by [8].

2.1.1 Method of Moments Analysis of Wire Dipoles

In an adaptive receiving system, an antenna array receives a signal corrupted by thermal noise and
possibly external interference such as clutter and jammers. From an electromagnetics point of view, this
can be treated as multiple incident fields impinging on the antenna. To understand the behavior of the

antenna, we must therefore analyze its response to an arbitrary incident field.

The receiving antenna is assumed to be a linear array of N elements. The elements are parallel, thin,
equispaced dipoles. Each element of the array is identically point loaded at the center. The dipoles are z-
directed, of length L and radius a, and are placed along the x-axis, separated by distance Ax. The array lies
in the X-Z plane.




Figure 3: A linear array of wire dipoles

We begin by analyzing the response of the antenna array to a incident field E™. Since the array is
composed of thin wires the following simplifying assumptions are valid [17]:

= the current flows only in the direction of the wire axes (here the z direction.)

= the current and charge densities on the wire are approximated by filaments of current and charge
on the wire axes (that lie in the y=0 plane)

= surface boundary conditions can be applied to the relevant axial component on the wire axes.
Based on these assumptions, the integral equation that relates the incident field to the current on the

wires and describes the behavior of the array is

>
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We solve this equation using the Method of Moments to obtain the MOM impedance matrix. The
basis functions used are piecewise sinusoids as described in [16] and shown in Figure 4. P (chosen odd)
basis functions are used per element. Using these basis functions and a Galerkin formulation, Eqn. (1) is
reduced to the matrix equation

[VI=[Z][1] = [I]=[Y][V], 2

where [I] is the MOM current vector with the coefficients of the expansion of the current in the sinusoidal
basis. [V] is the MOM voltage vector representing the inner product of the weighting functions and the
incident field. [Z] and [Y] are the MOM impedance and admittance matrices respectively. Both matrices

are of order NP x NP, where NP is the total number of unknowns used in the MOM formulation.




Assuming that the incident field is linearly polarized and arrives from direction (0, ¢), it can be

written in the functional form
) k.
E=Ee ™", (3)

where k=k[4, cos@sin@+a_singsin® +a_cos@]is the wave vector associated with the incident

direction. Therefore, the i entry in the MOM voltage vector [V], corresponding to the q" basis function

on the m™ antenna, is given by the analytic form

E e—jk(m—l ydxcosgsing
0

V= ¢ e sin (kAz) sin® B[cos(kAz cos @) cos(kAz)], (4)

' 2
where i = (m-1)P + ¢ and Az is the half the length of a single basis function.

The (i,l)‘h entry in the [Z] matrix is the inner product of the ™ basis function (f.m) with the z-
component of the electric field due to a sinusoidal current source corresponding to the [" basis function

Figure 4: Piecewise sinusoidal basis functions for MOM analysis

(foons [=(p-1D)P+n). Therefore, the entries of the [Z] matrix are a measure of the interaction between
different sections of the antenna array, that is, they are a measure of the mutual coupling between sections

of the array. An analytic expression for the entries of the MOM impedance matrix is derived in [16].

Because of the choice of a piecewise sinusoid basis and the choice of an odd number of basis
functions per antenna element, only one basis function is non-zero at the port. This is illustrated in Figure
4 where the basis function marked in bold is the only one contributing to the current at the port.

Therefore, the measured voltage at the port of the n'™ antenna is given by




‘/nu'u.\' _m = ZL Iﬂ ’ (5)

2

i.e. the measured voltage at a port of the array is directly proportional to the coefficient of the basis
function corresponding to the that port.

The next section illustrates the effects of mutual coupling by comparing the ideal case of no
mutual coupling between antenna elements with the case where mutual coupling is taken into account, but
not compensated for. The effects are demonstrated on a direct data domain algorithm.

2.1.2  Effects of Mutual Coupling

In [6], Sarkar and Sangruji present a direct data domain technique to adaptively recover a desired
signal arriving from a given look direction while simultaneously rejecting all other interference. The
technique is based on the fact that, in the absence of mutual coupling, a far field source presents a linear
phase front at the ports of a linear array. In this section, we demonstrate that the mutual coupling
undermines the ability of this algorithm to maintain the gain of the array in the direction of the signal
while simultaneously rejecting the interference. To do so we compare the performance of the algorithm in
the ideal case of mutual coupling with the case where mutual coupling is taken into account, but not
compensated for. We begin by briefly describing the adaptive technique developed in [6].

2.1.2.1 Least Squared Error Adaptive Nulling

Consider an array of N uniformly spaced isotropic point sensors as shown in Figure 3. The array
receives a signal from a known azimuthal direction ¢ and some interference sources from unknown
directions. In the absence of mutual coupling, each individual source presents a linear phase progression
across the face of the array. Therefore, the voltage at the i™ element due to the incident fields is

L
V= Se JECI=1)Avcos g, + 2 Jlejk{ i=1)Axcos ¢, + n,- , (6)

i
1=l

where §'is the complex strength of the signal component, J; represents the L interfering components that

JkAY cos ¢,

arrive from directions ¢ and n; is the additive noise component. Let S=e represent the phase

progression of the signal component from one element to the next. The term \/,—,3" Vi, therefore has no

signal component. Consider the KxK matrix equation given by

I 1 Ji} gt Tw, 1
V=BV, Vi=BVy o Vi =BV || wy _|0 (7
Ve =BV V=BV, -V, =BV, | lwi | |0
where K = (N+1)/2.
8




 The last (K-1) rows of the matrix contain only interference and noise terms. Setting the product of
these terms with the weights to zero, nulls the interference in a least squared sense. The equation
represented by the first row constrains the array gain in the direction of the signal. It can be shown that if
L+1 < K, the signal can be recovered and

K
S5=Y wV, (8)
k=1

2.1.2.2 Numerical Examples

An example demonstrates the effect of mutual coupling between the elements of the array on the
algorithm described in Section 2.1.2.1. In each example an array receives a signal corrupted by three
jammers. To focus only on the effects of mutual coupling these examples neglect thermal noise.

For each example two scenarios are compared. In the first scenario the ideal case of no mutual
coupling is assumed and the voltages at the array ports are given by Eqn.(6). These voltages are then
passed to the signal recovery subroutine to find the weights using Eqn. (7) and the signal is estimated
using Eqn. (8).

In the second scenario the mutual coupling is taken into account. The antenna is analyzed using the
Method of Moments. The intensities of the signal and interference and their directions of arrival, in
conjunction with Eqn. (4), are used to calculate the Method of Moments voltage vector. Equation (5) is
used to find the voltages that are measured across the load at the individual ports. These measured
voltages are input to the signal recovery subroutine. The signal intensity is then recovered using Eqn. (8).
No attempt is made to compensate for mutual coupling.

The details of the chosen array are presented in Table 1.

Table 1: Details of example array

Number of elements in the array 7
Length of z-directed wires A2
Radius of z-directed wires : A200

Spacing between wires A2
Loading at the center 50Q

Table 2 lists the base signal and jammer values for the examples presented. All signals and jammers

arrive from the elevation 6=90".




Table 2: Base signal and jammer values

Magnitude Phase DOA
Signal 1.0 V/m 0.0 45°
Jammer #1 1.5 V/im 0.0 75°
Jammer #2 2.0 V/im 0.0 60°
Jammer #3 1.0 V/m 0.0 30°

The receiving algorithm attempts to maintain the gain of the array in the direction of ¢, = 45° while
automatically placing nulls at in the interference directions. In all simulations the jammer intensities, the
directions of arrival of the jammers and the signal intensity are used only to find the voltages input to the
receiving algorithm. The receiving algorithm itself uses only the direction of arrival of the signal, i.e. only

the look direction is assumed known.

2.1.2.3 Numerical Example 1
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Figure 5: Signal recovery in the presence and absence of mutual coupling.

In this example, the interference is kept constant as shown in Table 2. The signal value is varied
between 0 V/m and 10 V/m. For each value of signal intensity the voltages in the absence of mutual

coupling are found. These values are passed to the receiving algorithm and the signal is reconstructed. If




the jammers have been nulled correctly, and the signal recovered properly, it is expected that the
reconstructed signal will have a linear relationship with respect to the intensity of the incident signal.

Figure 5 plots the results of using the algorithm presented in Section 2.1.2.1 to recover the signal in
the presence of jammers, but in the absence of mutual coupling. As can be seen, this magnitude displays
the expected linear relationship.

In the second scenario, for each value of the signal intensity, mutual coupling is taken into account
and the measured voltages are obtained using the MOM. Figure 5 also presents the results of using data
influenced by mutual coupling. As can be seen, in the presence of mutual coupling, the reconstruction is
completely inaccurate. As the signal value is increased, the reconstructed signal presents a non-linear
behavior.

2.1.24 Numerical Example 2
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Figure 6: Reconstructed signal as function of jammer intensity, without and with mutual coupling

In the second example, the signal is kept constant at 1.0 V/m as given in Table I. The intensity of
first jammer, arriving from ¢ =75, is varied from 1.0 V/m (0 dB with respect to the signal) to 1000.0 V/m
(60 dB) in steps of 5.0 V/m. The example compares the performance of the adaptive algorithm in the
absence of mutual coupling (the ideal case) with the performance in the presence of mutual coupling (the
realistic case). No compensation for mutual coupling is performed. If the jammers are properly nulled, we
expect the reconstructed signal to have no residual jammer component. Therefore, as the jammer strength

is increased, we expect the reconstructed signal to remain constant.




Figure 6 presenfs the results of using the receiving algorithm when mutual coupling is absent and
when it is present. The figure plots the magnitude of the reconstructed signal as a function of jammer
intensity. In the case of mutual coupling absent (the solid line), the reconstructed signal is
indistinguishable from the expected value of 1.0 V/m. This figure demonstrates that, in the absence of
mutual coupling, the receiving algorithm is highly accurate and can null a strong jammer. The dashed line
in Figure 6 shows the results of using the measured voltages that are affected by mutual coupling. The
magnitude of the reconstructed signal varies approximately linearly with respect to the intensity of the

jammer. This is because the strong jamming is not nulled and the residual jammer component completely
overwhelms the signal.

Figure 5 and Figure 6 illustrates the problem with applying a purely signal processing algorithm
without paying attention to the electromagnetic issues. In the realistic case of mutual coupling present,
even an effective signal processing algorithm fails totally. The reason the signal cannot be recovered
when mutual coupling is taken into account can be visually understood by comparing the adapted beam
patterns in the ideal case of no mutual coupling with the case where mutual coupling is present. In Figure
7, we see the beam patterns in two scenarios. The pattern clearly displays the three deep nulls at the
directions of the interference. The high sidelobes are in the region where there is no interference. Because

of the deep nulls, the strong interference can be completely nulled and the signal recovered correctly.
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Figure 7: Adapted beam patterns in the absence and presence of mutual coupling




The dashed line in Figure 7 shows the beam pattern when the mutual coupling is taken into account.
As is clear the gain of the antenna in the signal direction is considerably reduced, the pattern nulls are
shallow and are displaced from the desired locations. The shallow nulls result in the inadequate nulling of

the interference, hence the signal cannot be recovered.

The examples presented here illustrate the importance of the problem at hand. When mutual coupling
is taken into account not only is the main beam of the adaptive array is pointed in the wrong direction, but
also the ability to form deep nulls in the directions of the interference is considerably rediuced. In
summary, the mutual coupling between the elements undermines the ability of the algorithm to suppress

interference.

In summary, the least squared nulling (or D?) algorithm of Section 2.1.2.1 is a promising alternative
to classical statistical algorithms. However, using the voltages measured at the ports of the array yields
incorrect results and the mutual coupling between the elements undermines the ability of the algorithm to
suppress interference. The next section presents a technique to compensate for the effects of mutual

coupling for linear dipole arrays. This technique is more effective than the compensation technique of [8].
2.1.3 Compensation for Mutual Coupling

Most adaptive algorithms assume that each element in the array is independent of the other elements
in the array. The mutual coupling arises due to the re-radiation of the incident fields from the elements
themselves. To eliminate the effects of mutual coupling, we begin by realizing that the MOM voltages of
Eqn. (4) relate directly to the incident fields and so are not affected by mutual coupling. The approach
here therefore will be to recreate some part of the MOM voltage vector from the given measured voltages.

The Method of Moments analysis results in a matrix equation that relates the coefficients of the
current expansion to the MOM voltages through the admittance matrix. Since the MOM impedance and

admittance matrices are independent of the incident fields, they can be evaluated a priori.

The measured voltages at the ports of the antenna are related to the current coefficients by Eqn. (5).
Using this equation and Eqn. (2), the N dimensional vector of measured voltages, corresponding to the N

elements in the array, can be written as
[V ]mea.\' = [Z L ]lYIJ()I'f J[V ]’ (9)

where [Z,] is the NXN diagonal matrix with the load impedances at its entries, [Y ,,.] is the matrix with
the rows of the MOM impedance matrix [Y] that correspond to the ports of the array. [V], the MOM
voltage vector is of order NP, i.e. the number of unknowns in the MOM analysis. [Y,..] 1s a rectangular

matrix of order NxNP.

Since [Y pov) is a matrix with more columns than rows (P > 1), Eqn. (9) represents an
underdetermined system of equations. Our goal is to estimate some part of [V] given [V],.... Therefore,

we need a method to collapse the NXNP matrix [Y ..] to a NxN matrix.




The approach is best understood when illustrated with an example. Consider the case of a two
element array (N=2) and three unknowns per element (P=3). Then basis function #2 corresponds to the
port on the first element and basis function #5 to the port on the second element. In this case, Eqn. (9) can
be written as
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If the jammers and signal are all incident from approximately the same elevation 6, then the entries
of the length-NP vector are not all independent of each other. From Eqn.(4), if element / and i+1 belong
to the same element,

. —jkAzcos(8)
V,=e Vi (11)
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This equation is a square matrix equation that may be solved for the entries in the MOM voltage vector
corresponding to the ports.

Equation (13) is a relation between the measured voltages and the Method of Moments voltages that
correspond to the ports of the array. In a practical application, the measured voltages are the given
quantities and are affected by mutual coupling. The MOM voltages on the right hand side of Eqn. (13) are
the voltages that are directly related to the incident fields and so are free from the effects of mutual
coupling. Both vectors are of order N, the number of ports.




Therefore, this equation can be solved for the MOM voltages corresponding to the ports of the antenna.
Furthermore, if the elevation angle of interest (0) is fixed, the matrix can be evaluated a priori. Hence, the
computational cost of eliminating the mutual coupling is the limited to the solution of small matrix

equation.

The open circuited voltages are the voltages measured at the ports of the array if the ports were open
circuited. In [8] the authors assume that these voltages are free of the effects of mutual coupling. However
the open circuit voltage at a particular element is the voltage measured in the presence of the other open
circuited elements. The effect of mutual coupling, therefore, has been reduced but not eliminated. Mutual
coupling has been eliminated only when there is nothing impeding the path of the incident fields. In effect
not even the array itself.

The next four sections present examples to illustrate the efficacy of the formulation presented above.
The first two examples are the same as in Sections 2.1.2.3 and 2.1.2.4. For these two examples the use of
open circuit voltages as suggested by [8] is compared with the use of the voltages found from Eqn. (13).

2.1.3.1 Numerical Example 1

The seven element array defined in Table 1 receives a signal corrupted by three jammers. The base
signal and jammer strengths are as given in Table 2. The magnitude of the incident signal is varied from
0 V/m to 10.0 V/m in steps of 0.05 V/m while maintaining jammer intensities constant as given in the
table. For each value of the signal intensity the MOM voltage vector is evaluated to yield the measured
voltages. The measured voltages and the signal DOA are treated as the known quantities.

Using the measured voltages and MOM admittance matrix, the open circuit voltages are obtained.
These open circuit voltages are passed to the direct data domain algorithm described in Section 2.1.2.1
and an attempt is made to recover the signal. It is expected that the recovered signal varies linearly with
the intensity of the incident signal. Figure 8(a) presents the results of using the open circuit voltages. The
expected linear relationship is clearly seen, implying that the jammers have been nuiled and the signal

recovered correctly. The numerical value of the signal is correct within a calibration constant.

In the second scenario, the measured voltages are used to recover the vector of voltages without
mutual coupling. Figure 8(b) shows the results of using these recovered voltages to recover the signal.
Again, the expected linear relationship is clearly visible. This example has shown that open circuit
voltages do provide some compensation for mutual coupling. The use of open circuit voltages provides .
for significantly better signal recovery than using the measured voltages directly. The technique to
eliminate the effects of mutual coupling introduced in 2.1.3 also proves to compensate for mutual
coupling. In this example, however, the interference was relatively weak. A more stringent test for both

compensation techniques is to check their ability to suppress strong interference.
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(a) Recovery using open circuit voltages
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Figure 9: Signal recovery using open circuit voltages and after eliminating mutual coupling




2.1.3.2 Numerical Example 2

In the second example, the intensity of the incident signal is held constant at 1.0 V/m. The intensity
of the first jammer is varied from 1.0 V/m to 1000 V/im (60 dB above the signal) in steps of 5 V/m. For
each value of the jammer intensity, the MOM voltage vector is calculated and the measured voltages are
calculated. In the first scenario the measured voltages are used to find the open circuit voltages. The open
circuit voltages are passed to the direct data domain algorithm of Section 2.1.2.1. In the second scenario
the voltages after eliminating mutual coupling, using Eqn. (13) as suggested here, are used to recover the
signal. These voltages are used to recover the signal and null the jammers using the same algorithm. If the
jammers are properly nulled, the reconstructed signal magnitude should remain constant as a function of
jammer strength.

Figure 9(a) presents the results when the open circuit voltages are used to recover the signal. As can
be seen the recovered signal shows a near linear relationship a function of jammer strength. This indicates
that the jammer has not been adequately nulled and the residual jammer strength has overwhelmed the
signal.

Figure 9(b) plots the results of compensating for the mutual coupling using the technique presented
in this report. The magnitude of the reconstructed signal varies between 0:996 V/m and 1.004 V/m, i.e. the
error in the signal recovery is very small. This figure shows that the strong jammer has been effectively
nulled and the signal can be reconstructed.
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Figure 10: Beam pattern after eliminating mutual coupling




The beam pattern associated with compensating for the mutual coupling using the technique
presented in this report is shown in Figure 10. The nulls are deep and placed in the correct directions. This
demonstrates that the mutual coupling has been suppressed enough so as to null even a strong jammer.

2.1.3.3 Example 3: Effect of noise

The examples presented above illustrate the effects of mutual coupling and ignored the additive
noise at each antenna element. This example presents the effect of thermal noise on the adaptive
algorithm. The noise is additive and is modeled as a Gaussian random variable. The noise at any element
is assumed independent of the noise at the other elements. Since the noise introduces a random
component to the data, comparisons will be made using Monte Carlo simulations, in terms of averages

over many random samples.

Table 3: Signal and Jammer Values. Example 3

Magnitude (dB) | Phase DOA
Signal 1.0 0.0 85"
Jammer 1 2000.0 0.0 135°
Jammer 2 1.0 0.0 60”
Jammer 3 1.0 0.0 100°

In this example, a thirteen element array of thin, half-wavelength long, wire dipoles receives a signal
corrupted by three jammers as given in Table 3. The z-directed dipoles each have radius A/2200 and are

spaced half a wavelength apart. Each wire is centrally loaded with a 50€2 resistance.

Seven unknowns per wire are used in the Method of Moments analysis, leading to a total of 91
unknowns. The signal to noise ratio was set at 13dB. Note that jammer #1 is a strong jammer (66dB with
respect to the signal). For each of the 13 channels, a complex Gaussian random variable is added to the
measured voltages due to the signal and jammers. This set of voltages, affected by noise, is passed to the
signal recovery routine described in Section 2.1.2.1. This procedure is repeated 500 times with different
noise samples. These 500 samples are used to find the mean and variance. The output signal to
interference plus noise ratio (SINR) in dB is defined as

S 2
SINRIIHI :lOlOgI() {——LW—_—-:" (14)
bias~ + var

with bias defined as the difference between the true and mean signal values after 500 iterations.




Table 4: Performance of Direct Data Domain after compensating for mutual coupling

Before compensating
for mutual coupling

After compensating
for mutual coupling

Signal to Noise Ratio 13dB 13dB
Number of samples 500 500
True Value (1.0,0.0) (1.0,0.0)
Mean Value (0.93337,0.49295) (1.00379,-0.00298)
Bias (-0.06663,0.49295) (0.00379,-0.00298)
Variance 0.01044 0.01038
Output SINR 6.35526 19.86559

Table 4 summarizes the results of this example. When the measured voltages are used directly to
recover the signal, mainly due to the high bias in the estimate of the signal, the output SINR is only
6.35526dB. The high bias can be directly attributed to the inadequate nulling of the strong jammer.
However, when the mutual coupling is eliminated using the technique presented in this report, the
Jammers are completely nulled yielding accurate estimates of the signal. The total interference power is
suppressed to nearly 20dB below the signal.

The examples presented here demonstrate that the method proposed in this Section 2.1.3 is an
effective compensation for the effects of mutual coupling. Using the Method of Moments with multiple
basis functions per element allows us to reduce the mutual coupling to an extent where it is

inconsequential.

This section has demonstrated that, for the development of practical direct data domain algorithms,
the electromagnetic nature of the array must be taken into account. We have shown that the mutual
coupling between the elements of the array causes adaptive algorithms to fail. This problem is associated
with both covariance matrix approaches (stated earlier by [8]) and direct data domain approaches
(investigated here).

To properly characterize the antenna, the Method of Moments is used. Previously published work in
this area has used only one basis function per element. However, this is usually inadequate for an accurate
antenna analysis. The use of multiple basis functions per element in a practical manner is a major advance
over previously published methods. The mutual coupling is eliminated by recognizing that the MOM
voltage vector is free from mutual coupling. By using a relationship between the entries of the MOM

voltage vector, a square matrix equation is developed between the given measured voltages and the




relevant entries of the MOM voltage vector. It is shown that this method works very well in the presence
of strong interfering sources. Furthermore, it is shown that the proposed technique is superior to the
earlier suggested method of using the open circuit voltages.

In summary, this section has investigated a topic that is very important to the development of
practical adaptive algorithms. The proposed method is easy to implement and does not add an inordinate

computational burden on the adaptive process.
2.2 Mutual Coupling and Statistical Algorithms

Classical statistical STAP algorithms estimate a covariance matrix of the interference using data
from range cells close to the range cell of interest. The adaptive weights (w) are then obtained using

Rw=s = w=R"s, (15)

where, s is the space-time steering vector that sets the look direction (the angle and Doppler at which a
target is being searched). The steering vector is given by

s(¢, f,)=b(f,) ®a(9), (16)

where b( f;) is the temporal steering vector corresponding to normalized Doppler frequency fi, a(¢) is the
spatial steering vector corresponding to the look angle¢ and ® denotes the Kronecker product of two
matrices. The temporal steering vector is the M-element vector (note that M is the number of pulses in a
CPI) given by

b(¢):[] e.i'—”?f}/ e./'ZXZ/’!f,/ ".ej(M—l)z;gf‘/ ]T' (17)

The spatial steering vector is the response of the antenna array to an incident field that arrives from
the angle of interest. In the ideal case of a linear array of isotropic point sensors, the steering vector for

the N-element array is given by
a(p)= [1 p M Cos() 12kl cos(9) .“ej(N—l)kdcos(q))]T' (18)

Note that the derivation of the D" algorithm in Section 2.1.2.1 for an ideal array assumes this form of
the steering vector. There is an belief that by replacing the ideal steering vector of a(¢) in Eqn. (16) with
the a “true” steering vector mutual coupling does not impact on statistical algorithms. This “true” steering
vector may be obtained using either measurements or numerical electromagnetics analyses such as the
Method of Moments. However, this section will show that mutual coupling has other effects that must be
accounted for in the formulation or implementation of space-time adaptive processing.

2.2.1 Impact on Structure of Covariance Matrix

In the case of an ideal array, the spatial interference covariance matrix is Toeplitz. In the space-time
case, the space-time data vector can be arranged such that the covariance matrix is Toeplitz-Block-

Toeplitz. In the ideal case, each element of the array is independent of the others and the correlation




between elements is only a function of the distance between them. However, this is true only under the
ideal case. In a real array, each element in the array sees a different environment. The correlation between
two elements is a function of the distance between them and also the location of the elements in the array.

Table 5: Covariance matrices: without and with mutual coupling

Without Mutual Coupling With Mutual Coupling

0921059 | 059|041 | 037 | 022 | 023 1 080 | 0.76 | 0.57 | 044 | 0.28 | 0.23 | 0.0]

059 | 085 | 058 | 0.66 | 043 | 042 | 023 1 096 | 0.96 | 0.75 | 0.54 | 0.35 | 0.29 | 0.10

059 | 0.58 | 0.86 | 0.60 | 0.59 | 0.41 | 038 | 0.57 | 0.75 | 0.82 | 0.66 | 0.45 | 0.40 | 0.20

041 | 0.66 | 0.60 | 1.00 | 0.63 | 0.64 | 034 | 044 | 054 | 0.66 | 0.86 | 0.68 | 0.59 | 0.39

037 | 043 | 0.59 | 0.63 | 0.88 | 0.62 | 0.56 | 0.28 | 035 | 045 | 0.68 | 0.83 | 0.77 | 0.50

02210421041 | 064 | 062 | 090 | 0.60 | 0.23 | 0.29 | 040 | 0.59 | 0.77 | 1.00 | 0.71

023 1023|038 | 034|056 | 060 088 ] 0011010020 039] 050 0.71 | 0.73

Measure of “Non-Toeplitzity” = 0.1926 Measure of “Non-Toeplitzity” = 0.4827

To illustrate this point, Table 5 presents the magnitude of each element of the covariance matrix for
the case with and without mutual coupling. The array has seven elements spaced A/2 apart. Each element
is of length A/2 and radius A/200. The clutter is 25dB above the noise. 28 secondary data vectors are used
to estimate the 7X7 covariance matrix. The covariance matrices are normalized to the maximum absolute
value. The “Non-Toeplitzity” of the matrix is defined as mean squared summed error between the matrix
and its Hermitian. Mutual coupling is analyzed using the MOM as described in Section 2.1.1.

As can be seen, the covariance matrix is approximately Toeplitz in the ideal case of no mutual
coupling. In the case of mutual coupling the covariance matrix is significantly non-Toeplitz. Solving for
the weights assuming a Toeplitz matrix leads to incorrect solutions.

While the above discussion relates to the implementation of a STAP algorithm in hardware, the
following example presents a more important impact of mutual coupling on the performance of STAP
algorithms. For an ideal array, the number of significant clutter eigenvalues is set by the number of
pulses in a CPI, number of elements and speed of the platform. In general [4]

N, =N+B(M 1), (19)

where, 3 is the number of half element spacings that the aircraft transverses in a single pulse interval. In
this example, the seven-element array is used in conjunction with three pulses to form a CPI, i.e. N =7
and M =3 and the size of the covariance matrix is 21x21. The speed of the aircraft is set such at f=1, i.e.
the number of significant eigenvalues is 9. We use 84 secondary data vectors to estimate the 21x21

covariance matrix. The eigenvalue spread for the case without and with mutual coupling is given in Fig.1.
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As can be seen, the eigenvalue plot for the case without mutual coupling shows a sharp cutoff
at the 9" eigenvalue. For the case with mutual coupling, the cut off is significantly smoother.

The figure shows that in the case of mutual coupling, the number of significant clutter eigenvalues is
much larger than in the ideal case. This point is of particular importance in statistical algorithms that
depend on separating a signal subspace and noise subspace. In STAP, examples of such algorithms are the
principal components technique and the Cross Spectral Metric (CSM). INCLUDE PC AND CSM
REERENCES. In the area of direction of arrival estimation algorithms, such as the popular MUSIC
algorithm, also attempt to separate the signal and noise subspaces. The impact of the spread of
eigenvalues will lead to significantly reduced detection performance for the STAP algorithms and poor

resolution in direction of arrival algorithms.
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2.3 Compensation for Mutual Coupling on the JDL Algorithm

As mentioned earlier, to minimize the computation load Wang and Cai [5] introduced the Joint
Domain Localized (JDL) algorithm, a post-Doppler, beamspace approach that adaptively processes the

radar data after transformation to the angle-Doppler domain. Adaptive processing is restricted to a

[SS]
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Localized Processing Region (LPR) in the transform domain, significantly reducing the DOF while
retaining maximal gain against thermal noise. The reduced DOF leads to corresponding reductions in
required sample support and computation load.

In developing the JDL algorithm, the authors assume the receiving antenna to be an equi-spaced
linear array of ideal, isotropic, point sensors. Based on this assumption, space-time data is transformed to
the angle-Doppler domain using a two dimensional Discrete Fourier Transform (DFT). This approach is
valid under certain restrictions when the spatial and temporal steering vectors form the Fourier
coefficients. Due to the orthonormality of the DFT, the look space-time steering vector is localized to a
single point in the angle-Doppler domain.

The use of a 2D-DFT restricts the spacing between angle/Doppler bins and the possible look
directions/velocities. Without zero padding, the DFT can form only N orthogonal angle beams and M
orthogonal Doppler beams. If the look direction matches one of these N angle beams and the look
Doppler matches one of these M Doppler beams, the look steering vector is a column of the 2D DFT
matrix, which is orthogonal to the other columns of the matrix. The transformation therefore localizes the
look steering vector to a single bin in the angle-Doppler domain. To maintain the localization of the
target, the use of a window to suppress transform sidelobes is discouraged. For a small array, the beams
corresponding to the columns of the DFT matrix are widely spaced in angle with correspondingly reduced
“true” correlation between beams. For a large array, the beams are spaced too close together with little
information gained with each additional beam resulting in very high beam to beam correlation.

When applying the JDL algorithm to measured data, a crucial assumption in the development of [5]
is invalid. The elements of a real array cannot be point sensors. Due to their physical size, the elements of
the array are subject to mutual coupling. Furthermore, the assumption of a linear array is restrictive. A
planar array allows for degrees of freedom in azimuth and elevation. Therefore, the Fourier coefficients
do not form the spatial steering vector and a DFT does not transform the spatial data to the angle domain.
In this case, a DFT is mathematically feasible but has no physical meaning.

In a physical array, the spatial steering vectors must be measured or obtained using a numerical
electromagnetic analysis. These steering vectors must be used to transform the space domain to the angle
domain. This transformation is necessarily non-orthogonal with a corresponding spread of target
information in the angle-Doppler domain. Earlier attempts to apply JDL to a real array ignored the non-
orthogonal nature of the measured spatial transform [18].

Section 2 develops the JDL algorithm as applied to the case of an ideal array and serves to clarify the
original development of the JDL algorithm as proposed by Wang and Cai [5]. The development is
presented here to highlight the restrictions placed on the algorithm by the original formulation. Section 3
reformulates the JDL algorithm in terms of a transformation matrix. This formulation eliminates the
restrictions on the JDL algorithm and the DFT based formulation becomes a special, not necessarily

optimal, case. Section 4 presents examples to illustrate the improvement in processing performance




obtained by the new formulation. The examples use simulated data for a linear array of isotropic sensors
and measured data from the MCARM database [19].

2.3.1 Joint Domain Localized Processing
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Figure 12: Linear array of point sensors

Consider an equispaced linear array of N isotropic, point sensors as shown in Figure
[2. Note that the definition of incident angle is complementary to the definition in the earlier sections.
Each channel receives M data samples corresponding to the M pulses in a CPL Therefore, for each range
bin the received data is a length MN vector x whose entries numbered mN to [(m + 1)N] correspond to the
returns at the N elements in the array from pulse number m, where m=0,1, ..., M-1. The data vector is a
sum of the contributions from the external interference sources, the thermal noise, and possibly a target,

x=&s(¢, f,)+c+n, (20)

where & is the target amplitude, ¢ the vector of interference sources and n the vector of white noise. The
space-time steering vector s is defined in Egn. (16). Note that in STAP the steering vector sets the look
direction where the target is assumed to be. In practice, there is some beam mismatch between the real
target return and the steering vector. Note that the spatial steering vector a(¢) is the magnitude and phase
taper received at the N elements of the array due to a far field source at angle @. Due to electromagnetic
reciprocity, to transmit in the direction ¢, the elements of the array must be excited with the conjugates of
the steering vector, i.e. the conjugates of the steering vector maximize the response in the direction @.
Transformation of spatial data to the angle domain at angle ¢ therefore requires an inner product with the

corresponding spatial steering vector. Similarly, the temporal steering b(fy) vector corresponding to a




normalized Doppler frequencyﬁl is the magnitude and phase taper measured at an individual element for
the M pulses in a CPI. An inner product with the corresponding temporal steering vector transforms time
domain data to the Doppler domain. The angle-Doppler response of the data vector x at angle ¢ and
Doppler f; is therefore given by

x(, f,)=s" (@, f)x=b(f)®a@)] x, @1

where the tilde () above the above the scalar x signifies the transform domain. Choosing a set of spatial
and temporal steering vectors generates a corresponding vector of angle-Doppler domain data.

Equations (17) and (18) indicate that the for an ideal array, the temporal and spatial steering vectors
are identical to the Fourier coefficients. Based on this observation, the transformation to the angle-
Doppler domain can be simplified under two conditions:

* If a set of angles are chosen such that [(d/A)sing] is spaced by I/N and a set of Doppler
frequencies are chosen such that (fy) is spaced by 1/M | the transformation to the angle-Doppler
domain is equivalent to the 2D DFT.

= If the look angle¢ corresponds to one these angles and the look Doppler f; corresponds to one of
these Dopplers, the steering vector is a column of the 2D DFT matrix and the angle-Doppler
steering vector is localized to a single angle-Doppler bin.

The JDL algorithm as originally developed in [5] assumes both these conditions are met. This
simplification is possible only in the case of the ideal, equispaced, linear array of Figure 12. Due
to beam mismatch, the localization to a single point in angle-Doppler space is only exact for the look
steering vector.
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Figure 13: Localized Processing Regions in JDL

As shown in Figure 13, a LPR centered about the look angle-Doppler point is formed and
interference is suppressed in this angle-Doppler region only. The LPR covers 1, angle bins and g4
Doppler bins. The choice of N, and 14 is independent of N and M, i.e. the localization of the target to a
single angle-Doppler bin decouples the number of adaptive degrees of freedom from the size of the data

cube while retaining maximal gain against thermal noise. The covariance matrix corresponding to this




LPR is estimated using secondary data from neighboring range cells. The adaptive weights are then

calculated by

w=R""S, (22)

where R is the estimated angle-Doppler covariance matrix corresponding to the LPR of interest. The

number of adaptive unknowns is equal to ;g .The steering vector for the adaptive process is represented
by § and is the space-time steering vector s transformed to the angle-Doppler domain. Under the two

conditions listed above, § is given by the length .1 vector
§=[00---010---00], . (23)

It must be emphasized that this simple form of the steering vector is valid only because the DFT is an
orthogonal transformation and the space-time steering vector transformed to the angle-Doppler domain
using the same transformation as used for the data. The adaptive weights of Eqn. (22) are used to find a
statistic for detection by hypothesis testing. We use the embedded constant false alarm rate (CFAR)
modified sample matrix inverse (MSMI) statistic

,

~ H o~ =

W X 4

Pussmt = =m<  ° (24)
W S

where X, is the length .4 angle-Doppler data vector corresponding to the LPR and primary range bin.

2.3.2 JDL Based on a Transformation Matrix

As originally developed in [5], the JDL algorithm assumes a linear array of equispaced, isotropic,
point sensors and the two conditions listed in Section 2.3.1. These conditions, though not explicitly stated
in [5], restrict the choice of spacing between angle-Doppler bins in the transform domain and also the

allowed look directions.

The most significant problem with the JDL algorithm described in Section 2.3.1 is that the
assumption of an array of point sensors cannot be satisfied in practice. Each array element must have a
non-zero physical size leading to mutual coupling between the elements. Furthermore, the assumption of
a linear array is overly restrictive. Real arrays may be planar to allow for degrees of freedom in azimuth
and elevation. In practice, the spatial steering vectors are not the Fourier coefficients given by Eqn. (18)
and must be measured or obtained using a numerical electromagnetic analysis. The steering vectors so
obtained can be used to transform the space domain to the angle domain. The continued use of a DFT is
mathematically feasible, but the transform domain would not be the angle domain and would have no

physical meaning.

In this section we replace the DFT based transformation described in Section 2.3.1 with a general
transformation matrix. The key contribution of this new approach is the elimination of the two

stipulations on the original JDL algorithm of Wang and Cai. This formulation can be directly applied to




both linear arrays of isotropic point sensors and physical arrays of arbitrary configuration. In both cases.
the modifications can result in significantly improved detection performance.

In the JDL algorithm, only data from within the LPR is used for the adaptation process. Equation
(21) indicates that the transformation from the space-time domain to the angle-Doppler domain is, in
effect, an inner product with a space-time steering vector. This argument holds true for ideal linear arrays
and physical arrays. Mathematically therefore, the relevant transformation to within the LPR is a pre-

multiplication with a NM X 1,1, transformation matrix. The transformation process is
X =T"x, (25)

For example, based on Eqn. (21), if the LPR covers 3 angle bins (¢_,,¢ ,,7, = 3) and 3 Doppler bins
(f-1fo -7 = 3),

T=[b(f.,)®a(4.,) b(f,)®a(g,) b(f,)®a(g)
b(fo) ® a(¢—1 ) b(fo) ® a(¢o) b(fo) ® 3(¢,)
b(f,)®a(4,) b(f)®a(g,) b(f,)®a(g,)] (26)

=[b(f.) b(f) b(fHlelaw,) as,) alg)]

In {5], to achieve the simple form of the angle-Doppler steering vector given by Eqn. (23), the use of a
low sidelobe window to lower the transform sidelobes is discouraged. However a simple modification of
the transformation matrix in Eqn. (26) allows for the use of a low sidelobe taper in the spatial and
temporal domains. If a length N taper t; is to be used in the spatial domain and a length M taper t, is to be
used in the temporal domain, the transformation matrix is given by

T=[t,eb(f)) t,eb(f,)t, eb(f)]®[t sa(p )t ea(g,)t ea(g,)] 27)

where e represents not the usual inner dot product, but the Hadamard product, a point-by-point
multiplication of two vectors.

The angle-Doppler steering vector used to solve for the adaptive weights is given by the space-time
steering vector (s) transformed to the angle-Doppler space using the same transformation as used for the
data, i.e.

§=T"s. (28)

Note the transformation matrix defined in Eqn. (26) is defined for the chosen Doppler frequencies
and angles without any restrictions on their values. Further, no assumption is made about the form of the
spatial or temporal steering vectors, i.e. the use of a transformation matrix eliminates the two restrictions
placed on the original JDL formulation.

In the case of a linear array of isotropic point sensors, the steering vectors are obtained from Eqns.
(17) and (18). If the angles and Doppler frequencies satisfy the conditions listed in Section 2.3.1. the




transformation matrix T reduces to the relevant rows of the 2D DFT matrix. The DFT based formulation
is equivalent to choosing a spacing in the angle domain such that [(d/A)sing =1/N) and in the Doppler
domain of Af =1/M. Furthermore, if both the look angle and Doppler corresponds to one of these angles
and Dopplers, the transformed steering vector of Eqn. (28) is equivalent to the steering vector of Eqn.
(23). Even in the ideal case of a linear array of isotropic point sensors, the formulation of [5] is therefore a
special, not necessarily optimal, case of the more general formulation presented in this section.

The steering vector associated with a given angle is the measured magnitude and phase taper due to a
calibrated far field source. If measurements are not available, the steering vectors can be obtained from a
numerical electromagnetic analysis of the receiving antenna. Usually, even in the case of a real array, the
pulses are equally spaced in time and hence the temporal steering vector is unchanged. In the case of a
real array, the spatial component in Eqn. (18) must be replaced with a measured steering vector, i.e.

s(¢,f,)=b(f,)®a,(9), (29)

with corresponding changes in the transformation matrix. The measured steering vector may also be

obtained using a numerical electromagnetic analysis procedure, as in Section 2.1.1.

In Section 2.1.1, assuming both listed conditions are met and based on the orthogonality of the DT, .
the target is localized to a single point in the angle-Doppler domain and the angle-Doppler steering vector
reduces to the simple form in Eqn. (23). This simplification is invalid once the two restrictions are relaxed
and the target information is spread in the angle-Doppler domain. The use of Eqn. (28) accounts for the

resulting spread in target information.

Melvin and Himed [18] applied the JDL algorithm to measured data and used the measured steering
vectors to transform the space domain to the angle domain. In effect, without explicitly stating so, they
use a transformation matrix in the spatial domain and a DFT in the temporal domain. The spacing
between the angles chosen for the LPR is determined by the available measured steering vectors. The
spacing between the Doppler frequencies is fixed by the DFT. Crucially, the resulting change on the

angle-Doppler steering vector § is ignored and they assume the simplified form of the steering vector in

Eqgn. (23) is valid. However, this is untrue since the use of a different transform from the spatial domain to
the angle domain violates the assumptions on which Eqn. (23) is based. Furthermore, the authors of [13]

explicitly discourage the use of low sidelobe tapers in the transformation.

The next section present four examples to illustrate the improvements in adaptive performance
gained by using the transformation matrix formulation described above and taking the non-orthogonal
nature of the spatial steering vectors in to account. The examples also illustrate the use of a windowed
transformation from the space-time domain to the angle-Doppler domain. Two of the examples presented
use simulated data based on an ideal linear array of point sensors. The other two examples use measured
data from the Multi-Channel Airborne Radar Measurements (MCARM) [19] database.




2.3.3 Simulated Data

The formulation presented in Section 2.3.2 removed the restrictions placed by the original
development of the JDL algorithm in [5]. This section presents two examples to illustrate the
improvements in detection performance. The examples use simulated data based on an ideal linear array
of isotropic point sensors. The detection performance is illustrated by plotting the probability of detection
(P4 ), obtained using a Monte Carlo simulation, as a function of the target signal-to-noise ratio for a
chosen probability of false alarm (Pr,). The MSMI statistic of Eqn. (24) is used. This statistic has a
constant false alarm rate (CFAR) in that, given Gaussian interference, Py, is dependent only on the size of
the covariance matrix, the number of secondary data vectors chosen to estimate the covariance matrix and
the chosen threshold. In each of the examples presented, the Py is evaluated for two cases: the DET based
JDL algorithm of [5] and the transformation matrix formulation presented above. The second case shows

that the spacing between angle and Doppler bins in the transform domain are design variables that can be
used to improve performance. Here, the spacing in angle domain is chosen to be a fraction of the spacing
dictated by the DFT based formulation.

2.3.3.1 Data Model

These examples use a data cube containing the simulated returns of clutter and target information by
an airborne linear array of isotropic point sensors. The data generation scheme uses: the physical model
presented by Jaffer etr.al. [20] and Ward [4]. The clutter is modeled as a sum of the contributions of many
discrete far field sources. In this example, 181 discrete sources are used, spaced 1” apart. The amplitude
of each source is a complex Gaussian random variable whose average power is set by a chosen clutter to
noise ratio (CNR) and also weighted by the transmit beam pattern of the array. The normalized Doppler
shift (f) associated with a clutter source at angle ¢, is set by the velocity of the array platform v, and is
given by

f.=psing, (30)
where, as before, f is the number of half interelement spacings traversed by the aircraft in one pulse
interval, i.e.

p=2lr, 3h

d [y
and fg is the pulse repetition frequency. The contribution of the clutter patch at angle @. is therefore
c(¢)=alb(f) ®a(4,)] (32)

and o is the Gaussian random variable whose variance determines the CNR. The sum over all 181 clutter
sources forms the overall received clutter vector.
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The thermal noise is modeled as a Gaussian white noise process. The average power is set to unity
allowing for the clutter and target powers to be referenced to the white noise power. These simulations do
not include the effects of other interference sources such as jammers. In certain range cells, a target vector

Es(¢, f) is added. The target amplitude € sets the signal to noise ratio.

The examples that use simulated data ignore other factors that effect STAP performance such as crab
angle, mutual coupling and beam mismatch between target and steering vector. Table 6 lists the details of
the array and interference scenario. The table also lists the parameters used in the implementation of the
JDL algorithm and the spacing between angle and Doppler bins in the formulation of the modified JDL

algorithm developed under this effort.

Table 6: Parameters for Examples 1 and 2.

Parameter Example 1 Example 2
Elements (N) 8 8
Pulses (M) 8 8
Element Spacing 05X 10 A
Pulse Repetition Frequency (fr) 1024 Hz 1024 Hz
Mainbeam Transmit and
Target Azimuth (¢) 0 deg 0 deg
Transmit Array Pattern Uniform Uniform
- B 5.0 2.5
Target Normalized Doppler (fa) 1/3 1/3
Thermal Noise Power Unity Unity
Clutter to Noise Ratio 50 dB 50 dB
Number of Angle bins in LPR 3 3
Number of Doppler bins in LPR 3 3
Angle bin spacing (modified JDL) 1/2N 12N
Doppler bin spacing (modified JDL) 112M /M

2.3.3.2 Example 1: Half-Wavelength Spacing

This example uses data received by an 8-element array with 8 pulses per CPIL. The spacing between
array elements is A/2. If one were using the DFT to transform the space domain to the angle domain, the
spacing between angle bins is set automatically at Asing = (1/N)/(d/A) = 1/(0.5N) = 0.25, i.e. Aﬁ)z 14.47".
This large spacing leads to uncorrelated beams, reducing the ability of JDL to use the correlation to

suppress interference. The new formulation uses 7.24°, i.e. half the spacing as the original JDL algorithm.
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In this éxample, 36 secondary data vectors are used to estimate thé 9x9 angle-Doppler covariance
matrix. For the MSMI CFAR statistic, the threshold for a false alarm rate of 1% (Py,=0.01) is 8.35. This
high false alarm rate is chosen to reduce the number of trials required to obtain a reliable estimate of the

probability of detection. The number of trials is chosen to be 9964.
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Figure 14: Example 1. Probability of detection versus Signal-to-Noise Ratio

Figure 14 plots the probability of detection versus the signal to noise ratio for the above threshold.
The solid curve is the Py using the optimal weights obtained using the known space-time covariance
matrix. The other two curves compare the Py using the formulation developed in this report with the Py
using the DFT-based JDL algorithm. As is seen, the probability of detection is significantly higher for the
new formulation for the same signal-to-noise ratio and the same P;,. The new formulation shifts the P,
curve to the left by approximately 4 dB, a significant improvement in detection performance.

2.3.3.3 Example 2. Large Inter-element Spacing

The second example illustrates the working of the new formulation using an array with a large
interelement spacing of 10A. The details of the array, the scenario, and the parameters used in the
implementation of the JDL algorithm are listed in Table 6. Here the Doppler spacing chosen for the
modified JDL algorithm is the same as in the case of using a DFT. As in Example 1, 9964 independent

realizations are used to estimate the probability of detection.

Figure 15 plots the probability of detection versus the signal to noise ratio for the same threshold as
in Example 1. The solid curve is the P, using the optimal weights obtained using the known covariance
matrix. The other two curves compare the Py using the formulation developed in this report with the Py
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using the DFT-based JDL algorithm. For the same Py, the new formulation shifts the P, curve to the left

by approximately 2.5 dB.
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Figure 15: Example 2. Probability of detection versus Signal-to-Noise Ratio

It must be emphasized that this effort has investigated the optimal spacing between angle and
Doppler bins to maximize the performance of the JDL algorithm. The spacings used here represent just

one possible choice. The choice of the optimal spacing between angles and Doppler bins in the transform
domain is an open research problem.

2.3.4 Measured Data: Using the MCARM Database

This section presents examples of the performance improvement gained using the formulation
presented in this report, as applied to measured data. The examples use data from the Multi-Channel
Airborne Radar Measurements (MCARM) database [19], a vast coliection of clutter and signal
measurements collected by an airborne radar over multiple flights with multiple acquisitions on each
flight. The acquisitions used in these examples use a 22 element rectangular array arranged in a 2x11 grid
(N = 22). Each CPI comprises 128 pulses (M=128).

The database includes clutter measurements over different terrain and the returns from a target
aircraft flying approximately parallel to the radar platform. Some acquisitions include the signals (tones)
from a Moving Target Simulator (MTS) of known Doppler shift and power. Also provided with the data
is a set of measured spatial steering vectors for some specified azimuth and elevation angles. As

explained in Section 2.3.2, these steering vectors are used in [18] and here for spatial processing of the

data.
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The two examples presented here illustrate the improvement in detection perforrﬁance by accounting
for the non-orthogonal nature of the steering vectors. For each example, three scenarios are compared. In
the first two scenarios, the space-time data is transformed using a DFT in time and the measured steering
vectors in space. The first scenario ignores the target spreading due to the non-orthogonal nature of the
spatial steering vectors. This is equivalent to using Eqns. (25) and (26) to transform the space-time data to
the angle-Doppler domain, but using Eqn. (23) as the angle-Doppler steering vector. This approach has
been used by Melvin and Himed [19].

The second scenario accounts for the non-orthogonality and so uses Eqn. (28) to evaluate the angle-
Doppler steering vector. The final scenario uses a window before transforming the time domain to
Doppler domain. This scenario uses Eqn. (27) to evaluate the transformation matrix and Eqn. (28) to
evaluate the adaptive sieering vector for JDL. This effort has introduced, for the first time, the use of a
window in the transformation. In all examples, 3 angle bins and 3 Doppler bins form the LPR. The spatial
steering vectors are measured at approximately 1° spacings. The covariance matrix of the interference is
estimated using 18 secondary data cells on either side of the range bin of interest neglecting the first range -
cell on each side as a guard cell, i.e. 36 secondary data vectors are used to estimate the angle-Doppler
covariance matrix. The MSMI statistic of Eqn. (24) is used for detection.

In a radar system, a beam is transmitted in a particular direction and the returns are processed for
targets in that direction only. Hence, while all Doppler frequencies of interest are examined, the angle bin
of interest remains constant over the entire CPI. Therefore the adaptive steering vector of Egn. (28) can be
calculated {\it a-priori} for each CPL

The performance of windowed JDL is sensitive to the choice of window. Harris compares the
properties of many different possible windows [23]. His figure of merit is the difference between the
equivalent noise bandwidth and the normalized 3-dB bandwidth of the window. Using this criterion, he
concludes that for fixed point arithmetic, the Kaiser-Bessel window is the top performer. The sidelobes of
the Kaiser-Bessel window can be controlled by a parameter x which is half the time-bandwidth product of
the window. In this work, we use a 128-point Kaiser-Bessel window with x=logo(128) in the time
domain. In the space domain, due to the limited number of elements available, the reduction in the
mainbeam gain is significant even for shallow windows. Hence, a window is not used in the space

domain.
2.34.1 Example 1. Injected target

In the first example, a fictitious target of chosen amplitude, direction, and Doppler is added to the
MCARM data at a particular range bin. The amplitude and phase taper of the injected target at each of the
22 channels is obtained from the measured steering vectors. The amplitude of the injected target is chosen
such that it is too weak to be observed by non-adaptive digital beamforming. The JDL algorithm is used
to detect the injected target by suppressing the clutter.
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The JDL processing is performed at the target angle bin, for a few range bins surrdunding the
injected target, and for all Doppler bins. Since this example uses measured data, the figure of merit used
to compare the three scenarios is the separation between the MSMI statistic at the target range/Doppler
bin and the highest statistic at other range or Doppler bins. A large separation implies a large difference
between target and residual interference, improving the ability to detect the target.

This example uses data from acquisition 575 on flight 5. The target parameters are:
= Amplitude (&) = 0.00003.£0"

* Angle Bin =0’ = Broadside

= Doppler bin =-9

= Range bin =290

Unfortunately, the MCARM database does not clearly define the noise level of the antenna. Different
approaches to evaluating the noise level have yielded significantly varying results. For the acquisition at
hand, the noise floor has been estimated between -81 and -95 dB. Therefore, the signal-to-noise ratio of
the injected target before and after processing is not available.

Figure 16 plots the MSMI statistic, at the broadside and target range bin, as a function of Doppler for
the first scenario where non-orthogonality between the steering vectors is ignored, i.e the ideal steering
vector of Eqn. (23) is used for the adaptive processing. The statistic at the target location is clearly visible
over the surrounding clutter. However. the target is found at Doppler bin -8, not the expected -9. The
separation between the statistic at bin -8 and the highest clutter statistic at bin -24 is 3.13 dB. The statistic
at Doppler bin -9 is actually lower than the surrounding clutter. Figure 17 plots the MSMI statistic as a
function of range for Doppler bin -9. The target at range bin 290 is overwhelmed by the clutter at range
bin 266 and the target is 8.73 dB below the clutter.

Figure 18 and Figure 19 show the same plots when the non-orthogonal nature of the spatial steering
is accounted for. The improved detection performance is clearly visible with the peak in the correct
Doppler bin of -9. The highest statistic at Doppler bin 53 is 8.39 dB below the statistic at the target. This
is an improvement of 5.26 dB over the first scenario. Figure 19 plots the MSMI statistic as a function of
range at the target Doppler for the second case. Note that accounting for the non-orthogonality of the
steering vectors makes the target stand out over the surrounding clutter. The statistic at the target range
290 is 2.49 dB over the highest clutter statistic at range bin 266. This is an improvement of 11.22 dB over
the first case.
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Figure 18: MSMI statistic versus Doppler (Accounting for non-orthogonality of steering vectors)
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Figure 19: MSMI statistic versus Range (Accounting for non-orthogonality of steering vectors)
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Figure 21: MSMI statistic versus Range. Using a Kaiser-Bessel window in transformation




Figure 20 plots the results when the Kaiser-Bessel window is used. The statistic is maximum at
Doppler bin -9, showing a separation of 8.80 dB, an improvement of 5.67 dB over the first scenario and
0.41 dB over the second scenario. Figure 21 plots the results versus range. Again, the target, at range bin
290 stands out over the surrounding clutter. The separation over the highest clutter statistic is 3.13 dB, an
improvement of 11.86 dB over the first scenario and 0.64 dB over the second scenario.

A summary of the results of the above figures Table 7. The improvement is listed with respect to

traditional JDL processing.

Table 7: Separation between target and next highest MSMI statistic

Algorithm Doppler Improvement Range Improvement
JDL 3.10dB N/A -8.73dB N/A
Modified JDL 8.39dB 5.26 dB 2.49 dB 11.22 dB
JDL-Windowed 8.80 dB 5.67dB 3.13dB 11.86 dB

2.3.4.2 Example 2. MTS Tones

Flight 5 acquisition 152 includes clutter and tones from a moving target simulator (MTS) received at
pre-selected Doppler frequencies. Five tones are received at approximately -800Hz (0 dB), -600 Hz (-14
dB). -400Hz (-20 dB), -200Hz (-26 dB) and 0~Hz (-31 dB). The data in this acquisition are the returns
from 128 pulses measured at 22 channels. Using the Global Position System (GPS) and Inertial
Navigation Unit data of the radar platform, the known location of the MTS source and the timing of the
MTS pulse, it is possible to calculate the locations of the tones in range. The MTS generator is triggered
by the transmit main beam and so the tones are in the transmit direction. For acquisition 152, the tones are
located mainly in range bin 450 and about 6" degrees towards the nose. The pulse repetition frequency for
this flight was 1984 Hz, hence the separation of 200 Hz corresponds to nearly 13 Doppler bins.

Using the acquisition with the MTS tones allows us to compare the performance of the JDL
algorithm in the above scenarios on real data without any injected targets. The tones act as returns from
moving targets. The presence of five MTS tones makes it difficult to define a single figure of merit to

compare the different scenarios and so a visual inspection is used for comparison.

Figure 22 plots the resuits of using a non-adaptive digital beamformer to locate the MTS tones in
Doppler at the range bin and angle of the transmitter. The strongest tones at Doppler bins —52 and -39 are
clearly visible over the clutter. The other three tones are visible but embedded in the surrounding clutter.

Figure 23 plots the results of using the JDL algorithm without accounting for the non-orthogonality
of the steering vectors. As can be seen, the five MTS tones are visible, with the strongest tone at bin -53

spread out over Doppler space. However, a few spurious tones are also seen.
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Figure 24 plots the results of taking the non—orthogohality of the measured steering vectors into
account. The five MTS tones all clearly stand out over the clutter and the spread of the strongest tone has
been curtailed. The spurious tones are completely suppressed. Figure 25 plots the case where the Kaiser-
Bessel window is used to transform the time domain to the Doppler domain. Again, the five tones clearly
stand out and the spread of the strongest tone is curtailed. This case shows some improvement over the
case of Figure 24.

2.4 Conclusions Regarding Mutual Coupling

This theme of this effort is the transition of STAP algorithms from theory to practice, i.e the theme
of this effort is to develop the theoretical foundations to deal with real world effects ignored in the
original formulations. One of the most important real world effect that has been long ignored is the
mutual coupling between the elements of the antenna array. Sections 2.1 and 2.2 present the impact of
mutual coupling on the performance of direct data domain (Section 2.1) and statistical algorithms

(Section 2.2). Equally importantly, the two sections present simple, effective techniques to compensate
for mutual coupling in both D* and statistical cases.

For the development of practical direct data domain algorithms, the electromagnetic nature of the
array must be taken into account. This effort has shown that the mutual coupling between the elements of
the array causes adaptive algorithms to fail. This problem is associated with both covariance matrix
approaches (stated earlier by Gupta and Ksienski [8]) and direct data domain approaches (investigated
here).

To properly characterize the antenna, the Method of Moments is used. Previously published work in
this area has used only one basis function per element, equivalent to using open circuit voltages.
However, this is usually inadequate for an accurate antenna analysis. The use of multiple basis functions
per element in a practical manner is a major advance over previously published methods. The mutual
coupling is eliminated by recognizing that the MOM voltage vector is free from mutual coupling. By
using a relationship between the entries of the MOM voltage vector, a square matrix equation is
developed between the given measured voltages and the relevant entries of the MOM voltage vector. It is
shown that this method works very well in the presence of strong interfering sources. Furthermore, it is
shown that the proposed technique is superior to the earlier suggested method of using the open circuit
voltages.

In the realm of statistical processing, the JDL processing algorithm, as originally developed by Wang
and Cai [5], transforms space-time data to the angle-Doppler domain using a 2D DFT. The DFT based
transformation restricts look angles and the spacing between the angle-Doppler bins in the transform
domain. These restrictions are not stated explicitly in the original presentation. Furthermore, in practice,
the spatial steering vector is affected by mutual coupling between the elements of the array. The DFT is
not the appropriate transform from the space domain to the angle domain. In a practical case. spatial data

must be transformed to the angle domain using an inner product with the corresponding measured




steering vector. The spatial transformation is necessarily non-orthogonal leading to spreading of target

information in the angle domain.

This effort has reformulated the JDL algorithm in terms of a general transformation matrix
encompassing both the theoretical and practical scenarios. The formulation removes the restrictions
placed on the original JDL algorithm. Removing the restrictions on spacing between angle and Doppler
bins significantly improves the performance of the JDL algorithm. Section 2.2 uses two examples to
illustrate the improvement in the probability of detection for a given false alarm rate. These examples use
simulated data from an ideal array of point sensors. This allows for enough independent realizations for a
reasonable Monte Carlo simulation. It must be emphasized that the choice of optimal spacing between

angle and Doppler bins is yet an open research problem.

This report has also presented examples to illustrate the improvement in adaptive processing using
measured data from the MCARM program. While earlier researchers have used measured steering vectors
for the spatial transformation, the resulting spread in target information had been ignored. The
formulation presented here accounts for the spread and yields significantly improved performance.

This effort has also introduced, for the first time, a window in the transformation from the space-time
domain to the angle-Doppler domain. In earlier publications on the JDL algorithm, the use of a window is
explicitly discouraged because of the resulting spread in target information. However, since any target
spread can be accounted or, it is possible to take advantage of the low transform sidelobes by using an

appropriate window.

The key contribution of this new approach is the elimination of the two stipulations on the original
JDL algorithm and the introduction of a matrix based transformation to the angle-Doppler domain.
Interestmgly, the investigation of the impact of mutual coupling on the JDL algorithm has also resulted in

improvements in performance in the purely theoretical scenario of an ideal array of point sensors.

In summary, this effort has investigated a topic that is very important to the development of practical
adaptive algorithms. The proposed methods are easy to implement and do not add an inordinate
computational burden on the adaptive process. The next section presents another important aspect of the
transition from theory to practice: how non-homogeneous impacts on the performance of statistical STAP

algorithms.

3.0 Nonhomogeneous Data

This section presents another of the key issues that limit the performance of adaptive processing
algorithms in real world applications: the non-homogeneous and dynamic background environments
typically observed from airborne radar. Non-homogeneous data is the most significant of the three issues
that we discuss. Significant processing losses result from mismatches between the environment and the

processing algorithms.




3.1 Direct Data Domain Processing

The inability of traditional statistical algorithms to counter the non-homogeneous component of
interference motivates research in non-statistical or direct data domain (DY) algorithms.

As described in Section 2.1.2.1, in [6] an algorithm is developed that optimizes the signal to
interference in a least squares sense for signals at the angle at which a look-direction constraint is
established. This method minimizes, in a least squares sense, the error between the received voltages
(signal plus interference) and a signal from the assumed angle. This approach does not employ data from
outside the radar range cell being evaluated, i.e. this approach does not require secondary data. This
makes the D" an attractive alternative in non-homogeneous clutter. This is especially true in a severely
non-homogeneous clutter environment of urban and land/sea interfaces. The D* approach has recently
focused on one-dimensional spatial adaptivity [6]. This section introduces a new two-dimensional space-
time D’ algorithm based on the one-dimensional algorithm of [6].
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Figure 26: Principle of Direct Data Domain Processing

Consider the N-element uniformly spaced array shown in Figure 26. For a look direction of ¢, the
signal advances from one element to the next by the same phase factor z=[exp(j27sin(¢)]. The term
obtained by the subtraction operation in Figure 26 is therefore free of the target signal and contains only
interference terms. The D' algorithm minimizes the power in such interference terms while maintaining

gain in the direction of the target.

To best present the D' algorithm, the data from the N elements due to the M pulses in a CPI is
written as a NxM matrix X whose m™ column corresponds to the N returns from the 7" pulse. represented
by x(m). The data matrix is a sum of target and interference terms. Rewriting Eqn. (6) in terms of

matrices

X=£S(p, f,)+C+N. (33)
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Define the Mx(N-1) matrix A to be

'7_I —_— ’7_l o — —l )
Xoo =2, Xy X0 =2, Xy Xv-20 =2 Xy
-1 -1 -1
A= Xoi =2, X, Xi-z, Xy X(N—Z)l — 3 X(N—m (34)
-l -1 1
_XO(M—I) 2. Xy Koo =2 Koy 0 Xovoowwron = 2 Xovam-n |

where z,, as defined earlier, is the phase progression of the rarget signal from one element to the next.
Theoretically, the entries of A are interference terms only, though due to beam mismatch there may be
some residual signal power. However, unless the target is significantly off the look direction/Doppler, the
target signal is effectively nulled. In case the target is significantly off the look direction, it must be
treated as interference: in a surveillance radar, targets must be declared only if they are in the look
direction. In fact, sidelobe targets are an example of the discrete, non-homogeneous, interference that

drives this research.
Consider the following two scalar functions of a vector of spatial weights ws.

— H 2_ H H
G, = ‘Ws a(():N—Z)l = Wiaena3on-2Wso

I, = ”A*WS
R, =G, - K1,

2 i
I =wiATA'wW,, (35)

w

N 5

where ||| represents the 2-norm of a vector and ag..,) represents the first N-1 entries of the spatial
steering vector. In the equation, A'w, is used to remain consistent with the term w, a0 in that the

weights multiply the conjugate of the data.

The term G in Eqn. (35) represents the gain of the weight vector w; at the look angle ¢ while the
term [ represents the residual interference power after the data is filtered by the same weights. Hence, the
term R is the difference between the gain of the antenna at the look Doppler and the residual interference
power. The term « in the definition of R is an emphasis parameter that will be described later. The D

algorithm finds the weights that maximize this difference. Mathematically,

max [Rwl 1= Hmax [Gu-, "(2[;.;1

”w/Hz:I w’”2:l

(36)
_ max H[ H T ]vv
B “w/||7:' W Bow-2@B0n-2) KATA t

where the constraint HWS"7 =1 is chosen to obtain a finite solution. Using the method of Lagrange
multipliers, it can be shown that the desired temporal weight vector is the eigenvector corresponding to

the maximum eigenvalue of the (N-1)x(N-1) matrix la(,,.,,v__,)a(’::/\,_z) —I(ZATA#J. This formulation yields




a spatial weight vector of length (N-1). The loss of one DOF represents the subtraction operation in
defining the entries of A.

Analogous to the spatial adaptive weights, the temporal weight vector w, is the eigenvector

corresponding to the largest eigenvalue of the (M-1)x(M-1) matrix |b,,, b/t . —k’B"B"|, where
p g (0:m-2)P (001 -2)

bo.112) 1S the vector of the first (M-1) entries of the temporal steering vector defined by Eqn. (17) and B is
the Nx(M-1) matrix

X0~ 2, Xy, X — 2, Xy, XO(M-Z) - Zon(Mq)
X,,—zX X, —-zX X —2,X 0
B= 10 : 1" 1 : 12 . (m—2) = LA (arah) (37)
X(N»I)O —ZrX(N-I)l X(N-I)l - ZIX(N-I)Z X(N—I)(M~2) ‘ZIX(Nfl)(Mfl)

The length NM space-time adaptive weight vector, for look angle ¢ and look Doppler f4 is then given by

w(¢,ﬁ,)={w’]®[w"} (38)

0 0

The zeros appended to the spatial and temporal weight vectors represent the lost DOF in space and time.

The parameter x above sets a trade off between mainbeam gain and interference suppression. By
changing the value of this parameter, it is possible to emphasize one or the other term. In determining the

spatial weights, choosing x = O eliminates the interference term leaving the largest eigenvalue equal to

?
= (N— l) with the corresponding eigenvector W, =a Therefore, as x— 0

2

“a(ow.-z) ov-2)/ la(O:N-Z)

2
the D* weight vector approaches the non-adaptive steering vector used in pulse-Doppler processing.

On the other hand, if xis chosen to be large, the role of the gain term G is negligible and the weight
vector is dependent on the interference terms only. This leads to emphasis on the suppression of
interference at the expense of mainbeam gain. In this case, the look direction plays a limited role through
the term ; and the weight vector may vary significantly by range cell.

Note that the adaptive weight vector in Eqn. (38) is obtained using data from the primary range cell
only. There is no estimation of a covariance matrix and no correlation information required to obtain the
adaptive weights. This property gives direct data domain processing its greatest advantage and its greatest
disadvantage. The lack of an estimation of correlation allows use of D’ processing in severely non-
homogeneous situations. However, ignoring correlation information limits its ability to suppress correlated
interference. A hybrid method to overcome this drawback and combine the benefits of statistical and non-
statistical (D) processing will be described in Section 3.2.
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3.1.1 Performance of D’ Algorithm in Non-homogeneous Interference

This section presents a simulation to illustrate the advantages and disadvantages of D* processing.
This simulation includes the effects of clutter, barrage noise jammers, white noise and a discrete
interferer. Table 8 lists the parameters used in the example. The jammer and discrete interferer powers
are referenced to the noise level. The clutter power is fixed by the transmit power and the assumed land
reflectivity. The clutter and jammers represent correlated interference because these two interfernece
sources are homogeneous across all range cells. Note that the discrete interferer is within the target range
cell only, with an offset from the look direction in angle but not Doppler. Matching the non-homogeneity
to the target in one domain makes it more difficult for the D algorithm to suppress the non-homogeneity.

Table 8: Parameters for example using simulated data

Parameter Value Parameter Value
Elements (V) 18 Pulses (M) 18
Element Spacing . 0.5h Pulse repetition frequency 300 Hz
) ) Uncompressed pulse
Array Transmit Pattern Uniform ) 400us
width
Mainbeam Transmit .
i 0 deg Transmit power 400kw
Azimuth
Backlobe attenuation 30 Land reflectivity -3.0dB
Jammer azimuth
[-20° 45°] Jammer powers {40 dB 40 dB]
angles
Target normalized Jammer Elevation
‘ 173 [0° 0°]
Doppler (fy) angles
Doppler of interferer 1/3 Interferer power 40 dB
Angle of interferer -51° Thermal noise power Unity
Number of clutter
B (Clutter slope) 1 361
patches

The adapted beam pattern plots presented in this report are the mean patterns over 200 independent
realizations. Vertical bars represent the standard deviation over these 200 trials. This method was
required because the D* algorithm is non-statistical and based solely on a single data set/realization.
Operating with the known covariance matrix to obtain an ideal pattern, as possible in statistical

algorithms, is not an option.
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Figure 27: JDL Antenna Patterns at Target Doppler and Azimuth
(a) Angle Pattern (b) Doppler Pattern
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Figure 27 illustrates the antenna patterns along the target azimuth and Doppler for the JDL
algorithm. In the angle plot, note the high sidelobe in the direction of the discrete interferer. The discrete
interferer is within the primary range cell and so does not contribute to the covariance matrix estimate and
therefore cannot be nulled by a purely statistical algorithm such as JDL. However, the angle plot shows
the JDL algorithm does place deep nulls in the direction of the white noise jammers at -20° and 45°. The
Doppler plot shows the deep null placed at zero Doppler frequency corresponding to mainbeam clutter.
These two figures illustrate the effectiveness of the JDL algorithm in suppressing correlated interference
such as jamming and clutter. However, they also illustrate the inability of a purely statistical algorithm to
suppress point non-homogeneities (discretes).

Figure 28 plots the antenna patterns resulting from the implementation of the two-dimensional D*
algorithm. The angle plot shows that the D algorithm places a null in the direction of the discrete
interferer. The adapted spatial beam pattern shows a distinct null in the direction of the discrete interferer
at —51°, i.e. the algorithm is effective in countering a discrete interferer within the range cell of interest.
However, the figure also illustrates the limitations of the D* algorithm. The nulls in the direction of the
Jjammers are not as deep as in the case of JDL. The Doppler plot shows a shallow null in the direction of
the mainbeam clutter. In summary, D* algorithms do not suppress correlated interference as well as
statistical algorithms, however they are an excellent processing technique to deal with non-homogeneities.
In the next section, we present results from combining the benefits of D” and statistical algorithms.

3.2 Hybrid Processing

Performance degradation of STAP algorithms due to non-homogeneous data occurs in two forms. In
one form the secondary data is not i.i.d., leading to an inaccurate estimate of the covariance matrix. For
example, the clutter statistics in urban environments fluctuate rapidly with range. To minimize the loss in
performance due to non-homogeneous sample support, a NHD may be used to identify secondary data
cells that do not reflect the statistical properties of the primary data. These data samples are then
eliminated from the estimate of the covariance matrix.

The second form of performance loss is due to a discrete non-homogeneity within the primary range
cell. For example, a large target within the test range cell but at a different angle and/or Doppler appears
as a false alarm at the look angle-Doppler domain. Other examples include a strong discrete non-
homogeneity, such as a corner reflector, in the primary range cell. These false alarms appear through the
sidelobes of the adapted beam pattern. The secondary data cells do not carry information about the
discrete non-homogeneity and hence a statistical algorithm cannot suppress discrete (uncorrelated)
interference within the range cell under test. The example presented in Section 3.1.1 illustrates the impact
of such a non-homogeneity.

The inability of statistical STAP algorithms to counter non-homogeneities in the primary data
motivates research in the area of non-statistical D' algorithms, such as that described in Section 3.1.

50




These algorithms use data from the range cell of interest only, eliminating the sample support problems

associated with statistical approaches.

The main contribution of this section is the introduction of a two-stage hybrid STAP algorithm
combining the benefits of both non-statistical and statistical methods. The hybrid approach uses the non-
statistical algorithm of Section 3.1 as a first-stage filter to suppress discrete interferers present in the range
cell of interest. This first stage serves as an adaptive transform from the space-time domain to the angle-
Doppler domain and is followed by JDL processing in the second stage. The adaptive transform replaces
the steering vector based non-adaptive transform used in Section 2.3.2. The second stage is designed to

filter out the residual correlated interference [23].

3.2.1 Two-Stage Hybrid Algorithm

Target components
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Figure 29: Block diagram of the Two-Stage Hybrid Algorithm

Consider the general framework of any STAP algorithm. The algorithm processes received data to
obtain a complex weight vector for each range bin and each look angle/Doppler. The weight vector then
multiplies the primary data vector to yield a complex number. The process of obtaining a real scalar from
this number for threshold comparison is part of the post-processing and not inherent to the algorithm
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itself. The adaptive process therefore estimates the signal component in the look direction and hence the
adaptive weights can be viewed in a role similar to the non-adaptive steering vectors, used to transform
the space-time data to the angle-Doppler domain.

The JDL processing algorithm begins with a transformation of the data from the space-time domain
to the angle-Doppler domain. This is followed by statistical adaptive processing within a LPR in the
angle-Doppler domain. The hybrid approach uses the D* weights, replacing the non-adaptive steering
vectors used earlier. By choosing the set of look angles and Dopplers to form the LPR, the D’ weights
perform a function analogous to the non-adaptive transform. As shown in Figure 29, the D" algorithm
serves as a first stage adaptive transformation from the space-time to the angle-Doppler domain.

JDL statistical processing in the angle-Doppler domain forms the second stage of adaptive
processing to filter the residual correlated interference. The D' algorithm is used repeatedly with the 7,
look angles and the 7, look Doppler frequencies to form the LPR. The space-time data is transformed to
-the LPR in the angle-Doppler domain using these adaptive weights. Using the D* weights from Eqn. (38),
the transformation matrix of Eqn. (25) in Section 2.3.2 for ((D_, 00,051, = 3) and three Doppler bins

(fﬁ, o fum, = 3) is now given by the MNx9 matrix

T= [W(¢—|af—|) W(¢_,,f0) W(¢)—1’fl)
w(¢o’f—1) W(¢o’fo) W((povfl) (39)
wig. £1) we. fo) wig,. £,)]

This adaptive transformation is noninvertible, resulting in some information loss. However, this
information loss may be beneficial. The hybrid algorithm takes advantage of this loss to suppress discrete
interferers within the range cell of interest. The advantages associated with the JDL algorithm, such as in
reduction in the required secondary data support, carry over to the hybrid algorithm.

The same transformation matrix T is used to transform the primary and secondary data to the angle-
Doppler domain. Furthermore, the steering vector s is also transformed to the angle-Doppler domain
using this transformation matrix in conjunction with Eqn. (28). Unlike the JDL algorithm, this
transformation matrix changes from range cell to range cell. The hybrid algorithm therefore has a
significantly higher computation load than the JDL algorithm. The hybrid algorithm forms the adaptive
transformation matrix as given by Eqn. (39) for each range cell and then transforms this primary and

associated secondary data to the angle-Doppler domain. This process is repeated for each range cell.
3.2.2 Example 1: Simulated Data

The first example uses the same data as presented in Section 3.1.1 to illustrate the performance of the
D’ method. There it was shown that the D* algorithm can suppress a discrete interference source well, but
does not do as well against correlated interference such as white noise jamming and clutter. This example
shows the performance of the hybrid algorithm in the same case.
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Figure 30: Three D" spatial beams used to form LPR

This example uses 3 angle bins and 3 Doppler bins, i.e. a 3x3 LPR. The emphasis parameter x is
chosen to be (NM)'”. Figure 30 plots the spatial beam patterns associated with the three beams used to
form the LPR in angle-Doppler domain. Note that the three beams are separated by a chosen beamwidth
of 6.5°. All three patterns show a null in the direction of the discrete interferer at angle —~51°. These beams
illustrate the benefits of using the D' algorithm as the first stage. The algorithm suppresses discrete
interference and the data transformed the angle-Doppler domain is free of the effects of discretes.

Figure 31 plots the antenna beam patterns resulting from the use of the hybrid algorithm. The figure
shows that the hybrid algorithm combines the advantages of both statistical and non-statistical adaptive
processing. The adapted angle pattern shows deep nulls at -21°, 45°, and -51°, the directions of the two
jammers and the discrete interferer. Furthermore, the adapted pattern has a deep null at ®=0 resulting in
effective nulling of the mainbeam clutter. The hybrid algorithm therefore suppresses correlated
interference such as clutter and jamming and uncorrelated interference such as the strong interferer in

the primary range cell.
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3.23 Applying the Hybrid Algorithm to Measured Data

This section presents two examples of the application of the hybrid algorithm to measured data. The
examples use data from the MCARM database. The examples use two acquisitions (acquisitions 575 and
152 on flight 5) to illustrate the suppression of discrete interference in measured data.

Before the hybrid algorithm can be applied to the MCARM database, array effects must be
accounted for. The D* method was developed in Section 3.1 for an equispaced, linear array of point
sensors. This allowed for the assumption of no mutual coupling between the elements and that, for each
pulse, the target signal advances from one element to the next by a constant spatial multiplicative factor
z.. This, in turn, allowed for the crucial assumption of the elimination of the target signal in the entries of

the interference matrix.

The MCARM antenna is an array of 22 elements arranged in a rectangular 2 x 11 grid. For a
rectangular array these assumptions are invalid. Furthermore, as shown in Section 2.2, a real array is
affected by mutual coupling and the spatial steering vector must be measured.

Here we compensate for the mutual coupling using the measured steering vectors. Equation (18)
indicates that the spatial steering vector at broadside (¢ = 0) is given by a(¢ = 0)=[1 1...1 1. In the
absence of mutual coupling, this steering vector at broadside is valid for arrays in any configuration. The
approach then is to artificially rotate all the data, using the measured spatial steering vector, to force the
look direction to broadside. This compensates for the rectangular array configuration and the mutual
coupling associated with the look direction. The rotation is achieved by an entry-by-entry division of the
received voltages at the array level with the measured spatial steering vector corresponding to the look

direction. Using pseudo-MATLAB® notation, this operation can be represented by
%(m)=x(m)./a, (9), (40)

where x(m) represents the N returns from the m™ pulse in a CPI and a,,( @) represent the measured steering

vector corresponding to the look direction ¢, This operation is repeated for all pulses in all range bins.

The division operation of Eqn. (40) forces the effective spatial steering vector for any look direction
to be a(¢ = 0)=[1 1...1 1]". equivalent to broadside in an ideal array. The hybrid method is applied to the
‘rotated’ data with broadside as the look direction.

3.2.4 Example 2: Injected Targetin MCARM Data

In this example, a discrete non-homogeneity is introduced into the data by adding a strong fictitious
target at a single range bin, but not at the look angle-Doppler. Two cases are considered within this
example; no injected target and an injected weak target. The first case illustrates the suppression of the
discrete non-homogeneity. In the second case, a weak target is injected at the same range bin as the non-
homogeneity, but at the look angle and Doppler. This case illustrates the ability of the hybrid algorithm
to detect weak targets in the presence of strong discrete non-homogeneities. The data is the same as used
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earlier in this i‘eport to illustrate the performance of the JDL algorithm. In this case, only 22 of the 128
pulses in the CPI are used, i.e. N=22, M=22. The value of the emphasis parameter is &= (NM)*>

The details of the injected non-homogeneity and weak target are shown in Table 9.

Table 9: Parameters for injected non-homogeneity and target in MCARM Data

Parameter Non-homogeneity Target
Amplitude 0.0241 0.000241
Angle bin 35 65 (broadside)
Doppler bin -3 -2
Range bin 290 290
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The hybrid algorithm is applied to the data from the range bin with the non-homogeneity and
surrounding range bins. The output MSMI statistic from the second stage of the hybrid algorithm is
plotted as a function of range. In this example, five Doppler bins and five angle bins form the LPR for
both the JDL algorithm and the second stage of the hybrid algorithm. One hundred secondary data vectors

are used to estimate the 25x25 covariance matrix.

For the case without an injected target, Figure 32(a) compares the output from the JDL algorithm
with the output of the hybrid algorithm. As can be seen, the JDL algorithm indicates the presence of a
large target in the look direction (angle bin 65). This is because the large non-homogeneity at angle bin
35 and Doppler bin -3 is not suppressed by the statistical algorithm, leading to false alarms at the look
direction. On the other hand, the hybrid algorithm shows no target at broadside. The non-homogeneity is
suppressed in the first D' stage and residual clutter is suppressed in the second JDL stage.

A synthetic target injected at the look direction and Doppler illustrates that sensitivity of the hybrid
algorithm to weak targets. The parameters of the weak target are listed in Table 9. Figure 32(b) compares
the output of the two algorithms in the case of a strong non-homogeneity and a weak target. The JDL
algorithm again shows the presence of a strong target in the look direction. However, from Figure 32(a),
we know that the strength of the statistic is caused by the non-homogeneity. On the other hand, the plot
for thee hybrid algorithm shows the statistic at the target range bin is 6.9 dB above the next highest peak.

This example shows that the hybrid algorithm may be use to detect a weak target in the presence of a
discrete non-homogeneity within the range cell of interest.

3.2.5 Example 3: MTS Tones in the MCARM Data:

Certain acquisitions within the MCARM database include signals from a moving target simulator
(MTS) at known Doppler shifts. This acquisition was used in Section 2.3.4.2 to illustrate the benefits of
accounting for array effects. In acquisition 152 on flight 5, the MTS tones occur in angle bin 59. In this
example, the look direction is set to angle bin 85 for a mismatch and the JDL and hybrid algorithms are
applied to the same acquisition. For this look direction, the MTS tones at angle bin 59 act as strong
targets at a different angle bin, i.e. discrete non-homogeneities. As in Example 1, two cases are
considered; no injected target and a weak injected target. The first case illustrates the suppression of the
MTS tones acting as discrete, strong non-homogeneities. The second case illustrates the sensitivity of the
hybrid algorithm to weak targets. This example uses all 128 pulses in the CPL i.e. N = 22, M = 128. The

emphasis parameter for the direct data domain method is set to a large value of k= (NM) .
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In this acquisition, the MTS tones are in range bin 449-450 with the strongest tone at a Doppler
corresponding to bin —53 and angle bin 59. The example focuses on the suppression of this tone. Figure
33(a) plots the MSMI statistic of the two algorithms for the case without any artificial injected targets.
The JDL algorithm detects a large target at range bins 449 and 450. This false alarm is due to the strong
MTS tone at angle bin 59 even though the look direction is set at angle bin 85. The hybrid algorithm,
however, suppresses the strong MTS tone, showing no activity at range bins 449 and 450.

Figure 33(b) plots the results of using the two algorithms to detect a weak target injected into range
bin 450. The parameters of the weak target are; magnitude: 0.0001, Doppler bin: -53, angle bin: 85.
This weak target is easily detected by the hybrid algorithm with the statistic at the target range bin 9.8 dB
above the next highest peak.
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Figure 34: Beam Pattern associated with the Hybrid and JDL methods

The beam patterns associated with the two algorithms illustrate the improvement in using the D*
algorithm as the first stage of a two-stage hybrid method. Figure 34 plots the spatially adapted beam
pattern at the look Doppler frequency for the JDL and hybrid algorithms. The plot for the hybrid
algorithm shows the deep null in the adapted pattern of the hybrid algorithm near angle bin 59 while the
JDL pattern does not show such a null. In applying the JDL algorithm to the MCARM data acquisition
with MTS tones, the strong tones leak through the sidelobes of the adapted pattern, leading to false
alarms.
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4.0 Conclusions

The theme of this effort has been the development of the theoretical foundations to move space-time
adaptive processing from theory to practice. Two aspects of this problem were investigated in
considerable detail: mutual coupling and non-homogeneous data. The impact of mutual coupling has been
investigated for direct data domain and the statistical joint domain localized processing algorithm. To
counter the impact of non-homogeneous data this effort developed a new two dimensional D* algorithm.
This algorithm is then extended to a radically new hybrid algorithm that combines non-statistical D’

processing with statistical JDL processing.

In developing array signal processing concepts, researchers have usually ignored the fact that the
antenna array is itself a complex electromagnetic system. Here a detailed numerical analysis is used to
demonstrate that, if not accounted for, electromagnetic phenomena severely degrade the performance of
STAP algorithms. The key contribution of this research was to show that effective compensation for these
effects requires a detailed numerical analysis, such as the Method of Moments. Earlier approaches are
only valid in relatively low-interference environments. This effort was the first to use such a detailed
analysis and the formulation provides far superior compensation for electromagnetic effects than the
earlier open-circuit model. In addition, the compensation procedure is reduced to a pre-multiplication

with a matrix, i.e. the procedure does not place a heavy real time computation load.

Joint Domain Localized (JDL) processing is a popular Space-Time Adaptive Processing (STAP)
algorithm where adaptive processing occurs after transformation of the space-time data to the angle-
Doppler domain. This algorithm was originally developed for an ideal array of point sensors, ignoring the
electromagnetic effects in a real antenna array. The transformation is then equivalent to a 2D FFT. The
performance of this algorithm degrades when using real arrays and measured data. To compensate, under
this effort we introduce the use of a transformation matrix, based on measured steering vectors, an
approach valid for both ideal and real antenna arrays. The use of such a matrix transform accounts for the
correlation between the non-orthogonal measured steering vectors. This formulation also removes other
restrictions due to the use of the 2D FFT. The use of the appropriate transformation matrix improves

performance by an average of 7dB in testing using measured data.

Traditional statistical STAP algorithms assume the interference to be homogeneous and that the
interference covariance matrix is estimated by averaging over several received data samples. However, in
the real world, interference is non-homogeneous (non-stationary) and the performance of purely statistical
algorithms degrades. This effort introduced a new hybrid algorithm that builds on earlier attempts at non-
statistical processing in non-homogeneous data. The hybrid approach treats the non-statistical approach as
an adaptive transform to angle-Doppler space. JDL-like statistical processing in the angle-Doppler
domain then forms the second stage. The algorithm uses the transformation matrix formulation introduced

under this effort with the matrix now representing the adaptive transformation. For the first time a
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practical algorithm that combines the benefits of statistical and non-statistical processing has been
developed. This algorithm is applicable in non-homogeneous scenarios.

In summary, the issues raised in this effort are important to fielding STAP algorithms in fielded
airborne radar systems. This research has developed practical techniques to deal with two important real
world phenomena: mutual coupling and non-homogeneous data.
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